How to determine the portion and direction of a parametric curve when you are able to eliminate the parameter

$$
\text { Suppose you're given the parametric equations } \begin{aligned}
& x=2+t^{2} \\
& y=-t^{2}
\end{aligned}
$$

which corresponds to the rectangular equation $y=2-x$ (shown on the right \rightarrow),
and you need to determine which part of the graph is being traced out and in what orientation.

1. Decide which parametric equation ($x=$ or $y=$) you find easier to analyze.

$$
y=-t^{2} \text { will be easier }
$$

2. Sketch a graph of the function you chose in step 1 , with the horizontal axis representing t, and the vertical axis representing whichever variable you chose in step 1 (in this case, y).

3. Describe what's happening on the graph in step 2 as t goes from $-\infty$ to ∞ (ie. as you move from left to right). Every time the graph changes general direction (from increasing to decreasing, from decreasing to increasing, or making a sudden discontinuous jump), describe that change (from what value to what value).

$$
\begin{aligned}
& \text { As } t \text { goes from }-\infty \text { to } \infty, \\
& y=-t^{2} \text { increases from }-\infty \text { to } 0 \text {, then decreases to }-\infty
\end{aligned}
$$

4. Go to the graph of the original rectangular equation and identify which "points" on its graph correspond to the x - or y - values you found in step 3 .

Remember that
$x=-\infty$ corresponds to the far left side of the graph $\mid y=-\infty$ corresponds to the bottom of the graph
$x=\infty$ corresponds to the far right side of the graph | $y=\infty$ corresponds to the top of the graph
$x=0$ corresponds to the y-intercept of the graph | $y=0$ corresponds to the x-intercept of the graph you can use the rectangular equation to find specific points
and
x increasing corresponds to moving right | $\quad y$ increasing corresponds to moving up
x decreasing corresponds to moving left $\mid \quad y$ decreasing corresponds to moving down
$y=-t^{2}$ goes from $-\infty$ to 0 to $-\infty$, so the parametric curve goes from
the bottom of the graph
of $y=2-x$

up to the x-intercept $(2,0)$
down to the bottom

5. Sketch out only what you described in step 4.

YOUR TURN: (check using your calculator AFTER you have a solution)

A. Analyze the parametric equations $\begin{aligned} & x=-t^{4} \\ & y=-t^{8}\end{aligned}$, which correspond to the rectangular equation $y=-x^{2}$, by analyzing the $x=$ equation.
B. Analyze the parametric equations $\begin{aligned} & x=e^{-t} \\ & y=2-e^{-t}\end{aligned}$, which correspond to the rectangular equation $y=2-x$, by analyzing the $x=$ equation.
C. Analyze the parametric equations $\begin{aligned} & x=e^{2 t} \\ & y=-e^{t}\end{aligned}$, which correspond to the rectangular equation $x=y^{2}$. You must decide which parametric equation to analyze (try both, but one will be easier than the other).
D. Analyze the parametric equations $\begin{aligned} x & =\sin t \\ y & =\cos ^{2} t\end{aligned}$, which correspond to the rectangular equation $y=1-x^{2}$. You must decide which parametric equation to analyze.
E. Analyze the parametric equations $\begin{aligned} & x=4-2 \ln t \\ & y=\ln t\end{aligned}$.

You must find the rectangular equation, and decide which parametric equation to analyze.

